

1st Beam of an Ultra-high Gradient Traveling Wave Photogun

Chunguang Jing on behalf of joint efforts from Euclid Techlabs, AWA, and NIU

Motivation

Empirical formula summarized from decade of high gradient accelerator research

A. Grudiev et al., Phys. Rev. ST-AB, 12, 102001 (2009).

Early time study in CLIC, 30GHz era

W. Wuensch et al., Proc. PAC03, 495-497, 2003.

LCLS photogun, the most successful Cu photogun: S-Band, 3~4 us rf pulse, 120MV/m on Cathode

1.More efficient for no beamloading applications2.Less dark current

Design----RF properties

Design---beam simulation

Parameter	Value
Laser spot size on cathode	70 micron
Flat top laser rms length	3.2 ps
Peak field on cathode	350 MV/m
Charge	100 pC
Normalized emittance	0.15 mm- mrad*
RMS bunch length at exit	365 micron
Relative energy spread at exit	0.003
Beam energy at gun exit	3.1 MeV
Beam energy at exit	8.5 MeV

* Optimized with existing components in hand (solenoid, linac, etc).

Engineering, Fabrication, and Bench Test

Conditioning

- Achieved 350MV/m on cathode
- Observed strong dark current loading regime but quickly conditioned away
- ➤ It only took 70k pulses for a full condition
- Back to 200MV/m to 250MV/m region, no breakdown, no measurable dark current

Beamline

Beamline---beam generation

- First beamline was constructed without Linac.
- > The goal is to generate the beam, measure the charge and the energy

Beamline---laser transportation

Challenge to get the timing correct between the laser to the drive photogun and TW-photogun.

Beamline---laser alignment

Experiment---1st Beam

~3MeV

Experiment---phase scan

Experiment---energy jitter

More detailed work is needed to identify the jitter sources: rf phases, amplitude, laser timing, etc.

Next---components

Phase shifter

Adjustable power splitter

Brazeless linac

Next---Application

Fast kicker has been tested

Septum has been built

phase shifter (under fabrication)

Power Extractors and Traveling wave gun have been tested

Note: 1. only key elements are enclosed in this simplified configuration.

- 2. Main diagnostics will be needed, e.g. YAG, BPM, energy spectrometer, deflector for longitudinal phase space measurement, etc.
- 3. This proposed experiment has strong synergies with our collaborator Prof. Philippe Piot NIU as well as the AWA facility.

Summary

- Take advantage of the Short RF pulse to reach ultrahigh gradient in a photogun, thus a high quality beam.
- Deliverable is to establish an X-band photoemission beam source at AWA for SWFA study.

Acknowledgment

Grant # DE-SC0018709

AWA Team: John Power, Eric Wisniewski, Wanming Liu, Jiahang Shao, Gwanghui Ha, Scott Doran, Charles Whiteford, Seongyeol Kim.

NIU Team: Philippe Piot, Xueying Lu, Wei Hou Tan

Euclid Team: Sergey Kuzikov, Ernie Knight, Pavel Avrakhov, Edward Dosov, Ao Liu, Shashi Poddar, Yubin Zhao, Sergey Antipov, Chunguang Jing.

